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Tutorat Géom & Poly
Relation d’équivalence et limite unique

1 Relations d’équivalence
Pour cette partie du tutorat, j’ai décidé de faire une correction commentée de l’exo 3 de l’annale de
2015-2016. J’ai aussi ajouté un exemple de relation d’équivalence sur autre chose que des couples. Je
mets régulièrement des commentaires en bleu italique.

Correction commentée de l’exercice
Question 1

On cherche à montrer que la relation R est une relation réflexive et symétrique, on utilise donc les
propriétés de cours.

Réflexive :
Soit (x, y) ∈ Z2, R est réflexive car xy = xy.
Normalement la réflexivité, ça va. On oublie juste pas le car qui est important.

Symétrique :
Soient ((x, y), (x′, y′)) ∈ (Z2)2 tels que

(x, y)R(x′, y′)

Même si la notation du couple de couple fait peur, il suffit de la décomposer : un couple est sur Z2,
donc un couple de couple sur (Z2)2.

On a alors :
(x, y)R(x′, y′) ⇒ xy′ = yx′ ⇒ x′y = y′x ⇒ (x′, y′)R(x, y)

Oui, ça à l’air stupide comme ça, mais il suffit juste de mettre les termes à la “bonne place” dans ce cas.

Donc R est symétrique.

Question 2

On a :
(x, y)R(0, 0) ⇔ 0 = 0

Qui est une tautologie. Donc tout élément (x, y) de Z2 est en relation avec (0, 0)
La question nous envoie vers le chemin du contre-exmeple pour montrer que ce n’est pas transitif. On
va donc poser la définition avec deux éléments bien choisis.

On pose alors (1, 1) ∈ Z2 et (420, 69) ∈ Z2. On a, de manière évidente :
(1, 1)R(0, 0)

(420, 69)R(0, 0)

¬ ((1, 1)R(420, 69))

⇔


0 = 0

0 = 0

420 ̸= 69

Donc R n’est pas transitive.
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Question 3

Maintenant qu’on a du non nul, on va pouvoir diviser, et c’est ça la simplification de l’expression de
R et parce que c’est plus simple, on va nommer le nouvel ensemble.

On applique maintenant la relation sur l’ensemble E = Z× Z∗.
Soient ((x, y), (x′, y′)) ∈ E2, on a alors :

(x, y)R(x′, y′) ⇔ xy′ = yx′ ⇔ x = x′ y

y′
On peut diviser puisque y′ ̸= 0

On démontre maintenant la transitivité de R puisqu’on a déjà montré qu’elle est réflexive et symétrique.

Soient ((x, y), (x′, y′), (x′′, y′′)) ∈ E3 tels que :{
(x, y)R(x′, y′)

(x′, y′)R(x′′, y′′)
⇔

{
x = x′ y

y′

x′ = x′′ y′

y′′

⇒ x =

(
x′′ y

′

y′′

)
y

y′

⇔ x = x′′ y

y′′

⇔ (x, y)R(x′′, y′′)

Donc R est transitive.

Question 4

Dans ce cas, la classe d’équivalence d’un couple (x0, y0) est l’ensemble défini par :

cl(x0, y0) = {(x, y) ∈ E \ (x0, y0)R(x, y)}

C’est l’écriture d’un ensemble en maths, ça se lit : “Les couples (x, y) de E tels que on a la relation”

Pour déterminer la classe d’quivalence, on “applique” la relation d’équivalence et on observe le résultat
obtenu. Si on obtiens une égalité avec tout les termes inconnus, c’est notre condition, sinon (souvent
à cause de 0) on peut avoir deux conditions.

cl(1, 1) = {(x, y) ∈ E \ (1, 1)R(x, y)} ⇔ cl(1, 1) = {(x, y) ∈ E \ x× 1 = y × 1}
⇔ cl(1, 1) = {(x, y) ∈ E \ x = y}

cl(0, 1) = {(x, y) ∈ E \ (0, 1)R(x, y)} ⇔ cl(0, 1) = {(x, y) ∈ E \ y × 0 = x× 1}
⇔ cl(0, 1) = {(x, y) ∈ E \ y ∈ Z∗ et x = 0}

Un de ces famuex cas où un ×0 cause la variable devant la multiplication de prendre toutes les valeurs
de l’ensemble dans lequel elle est définie

cl(2, 10) = {(x, y) ∈ E \ (2, 10)R(x, y)} ⇔ cl(2, 10) = {(x, y) ∈ E \ 10x = 2y}
⇔ cl(2, 10) = {(x, y) ∈ E \ 5x = y}
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Autre exemple avec des droites
On peut prendre l’ensemble des droites du plan. Et la relation D//D′.
En effet :

D//D D//D′ ⇒ D′//D (D//D′ et D′//D′′) ⇒ D//D′′

Dans ces cas là, les classes d’équivalences sont définies par les droites ayant un vecteur directeur
colinéraire entre elles.
Si vous voulez travailler sur autre chose que des couples, vous pouvez essayer d’étudier cette relation
en posant une droite d’équation y = ax+ b.

2 Démonstration de l’unicité de la limite
J’ai choisi de faire une démo différente de celle du cours, le principe est le même mais je comprends
mieux celle-là. Pour qu’elle soit plus accessible pour vous, je mets régulièrement des commentaires en
bleu italique (parce qu’avouons-le, c’est une jolie couleur).
Si vous avez compris et que vous appréhendez bien celle du cours, restez dessus pour éviter de vous
mélanger les pinceaux, cependant, je vous propose quand même de lire la partie sur le principe de la
démonstration et les commentaires de la démo car ils expliquent aussi celle de la prof sur certains
aspects.

Principe de la démonstration
Avant de commencer la démonstration, j’aimerais vous expliquer les principes qui nous poussent à
utiliser le raisonnement par l’absurde.

Qu’est-ce qu’une limite ?

Pour cette démo, on se place dans le cas de convergence de suite (avec une limite finie). Dans ce cas
là, la limite est un point que la suite va tendre à atteindre. Mais qu’est-ce que ça veut dire de tendre
vers ?
Cela veut dire que, dans le cas d’une suite (mais vous verez que la limite appliquée aux fonctions est
assez similaire), on va être capable, pour n’importe quel écart autour de la limite, de contenir tout les
termes de la suite au bout d’un certain rang.

Graphiquement, ça donne quoi ?

Tout est toujours plus simple avec un graphique, car une image vaut milles mots.
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Avec l la limite de la suite et ε la valeur de l’écart par rapport à la limite. Comme vous pouvez le
voir au dessus, vous pouvez faire tendre ε vers 0, et pour autant, on sera toujours capable de trouver
un rang à partir duquel la suite sera contenu par les bornes oranges. Et deux limites sont impossibles
(j’ai éxagéré sur le graphique mais en maths, on peut toujours “zoomer” à l’infini donc, le principe est
le même).

La démonstration en elle-même
Pour cette démo, on a besoin de poser deux limites différentes, comme vous l’avez vu sur le graphique,
c’est impossible. Mais il faut le démontrer proprement.

Soient (un)n une suite à valeurs dans R et (l, l′) ∈ R2 tels que l ̸= l′.

On commence le raisonnement par l’absurde

On suppose que l et l′ sont des limites de un. Alors :

∀ε > 0,

{
∃N1 ∈ N, ∀n ≥ N1, |un − l| < ε

2

∃N2 ∈ N, ∀n ≥ N2, |un − l′| < ε
2

Pour que les deux conditions soient vérifiées en même temps, on doit prendre le N qui permet de véri-
fier ces conditions, c’est-à-dire le max des deux. En effet, si n > max(N1, N2), alors n > N1 et n > N2

On pose N = max(N1, N2), on a alors :

Ici, on manipule des inégalités avec |a+ b| < c ⇔ −c < a+ b < c (∗)

∀ε > 0, ∀n ≥ N,

{
|un − l| < ε

2

|un − l′| < ε
2

⇔

{
− ε

2 < un − l < ε
2

− ε
2 < un − l′ < ε

2

J’utilise l’équivalence (∗)

⇔

{
ε
2 > l − u′

n > − ε
2 ×−1

− ε
2 < un − l′ < ε

2

⇔

{
− ε

2 < l − u′
n < ε

2 Je remets dans l’ordre
− ε

2 < un − l′ < ε
2

⇒ −ε < l − l′ < ε Somme des inégalités (IMPLICATION)
⇒ |l − l′| < ε J’utilise l’équivalence (∗)
⇒ |l − l′| = 0

⇒ l = l′ #

En manipulant, on trouve que l’écart entre les deux limites est inférieur strict à n’importe quel écart
infiniment petit, autrement dit, qu’elle sont égales.

Donc la limite est unique.
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